Hike with a Dune Scientist

Counting Carbon at South Beach State Park, Oregon

View down to the ocean from the crest of a dune

When you visit Oregon’s coast you may have noticed that it takes some effort to get down to the beach. Much of Oregon’s coast is characterized by large grass-covered dunes that separate inland areas from the sandy shoreline environment. So, getting to the beach often takes a little bit of a climb. This was not the case some 100 years ago. 

Before European colonization on the Pacific Northwest coastline, much of what is now a dune system would have looked very different. Instead of walls of sand 15 meters high, a hummocky sand sheet would have stretched to the shoreline. 

The dune landscape was created by people. In 1910, European beach grass (Ammophila arenaria) was introduced to the Oregon coast to stabilize and control areas of sand near human habitation. Later, in the 1930s, American Beach grass was also introduced.  

These grasses are really good at capturing sand and building dunes. They are also really good at spreading via seed dispersal and rhizomatic growth. The result is the grass-covered dunes you see stretching down the coastline today. 

So, how should we feel about this takeover? 

I met up with John Stepanek, biologist, and Ph.D. candidate in Sally Hacker’s Lab at Oregon State University, at South Beach State Park to discuss these built dunes and what they mean for Oregonians now and in the future.   

The Hike 

  • Trailhead: South Beach State Park Day Use Area (South Jetty Trailhead)
  • Distance: varies (approx. 2 miles)
  • Elevation Gain: minimal
  • Details: No parking pass required. Ample parking at the trailhead. Restrooms are available. Access roads to the trailhead are paved. South Jetty Trail is a paved path.
Forested dune ecosystem on South Jetty Trail

Meet and Greet

The day was bright and warm when I met John in the parking lot at South Beach State Park. John had his dog with him, and both were friendly and welcoming, as we made our introduction and started down the paved South Jetty trail. 

John told me how he grew up in California not really knowing what he wanted to study. He enjoyed biology in high school, and the outdoors, but it took him a while to find his path. 

“I thought I would like to be a wildland firefighter,” John reminisced.

However, his love for biology, and specifically plants, grew while attending Cal Poly for his undergraduate degree. And eventually, he changed his major from Forestry to Biology. 

Despite his love for plants, John’s early involvement in research was focused on reptiles. 

“I studied rattlesnakes and blue-bellied lizards for three years,” said John.  

It wouldn’t be until he came to OSU and joined Sally Hacker’s Lab that his attention would be drawn back to his love for plants, as well as a new focus of study—dunes.    

Forested Dune Ecosystem

John and I continued down the wide path. On either side of us was a wall of trees and shrubs. I asked John with his expert eye to describe what we were seeing. 

“We are in a forested dune ecosystem,” said John, his love for botany radiating forth. 

 “The main canopy is shore pine,” he went on, pointing to a rough-barked tree with long needles and a bent stature. “It is one of the only pines with two needles in each bundle.” 

John went on to explain how shore pine is just a subspecies of a conifer that typically grows in the mountains, called the lodgepole pine.  Grown on the coast it tends to be shorter and more gnarled, while in the mountains it grows straight and tall. 

But shore pine is not the only canopy tree in the dune forest. Sharp-needled Sitka spruce is also often present. I noticed a few growing alongside the shore pine. 

Soon John and I got to botanizing—noticing and pointing out all the plants on the trail. 

“Ferns and grasses grow out here,” John stated. “Salal as well.” He pointed to the thick, large-leaved plant with an angular alternate arrangement.

Native plants, like evergreen huckleberry, twinberry, and our native beach grass were all identified, as well as non-native scotch broom and European beach grass. 

“It is not super complex, at least not in the state it is in… the grasses have reduced the native biodiversity,” John explained. “There are a lot of different plants but there is low abundance.” 

John showed me how to tell the native beach grass from the non-native varieties: “See how it has a bluish wax that you can rub off, and how wide it is with a prominent midrib?” 

Charting the Dunes 

It didn’t take long before John and I reached a trail heading left toward the beach. We decided to take it, to see what lay beyond the forested back dune (also known as the hind-dune).

John described the transition from the back dune heading toward the coast as being a bit like walking forward in time with the forested back dune being the oldest and the beach the youngest—a study in succession. 

We moved forward—in space and time. 

Heading up the dune heel

The Heel

As we entered the dune heel—the area just behind the dune closest to the ocean—the vegetation transitioned from forest to grass. Though European beach grass was dominant, many shrubs and small herbaceous species grew in this more sunlit environment.

John pointed out some young yarrow with its lacy leaves and beach strawberry trailing along the path edges. We also saw the radiating leaves of the seashore lupine (Lupinus littoralis). 

“Pearly everlasting is common in summer,” John added.  

Even sword fern, typically a forest plant, seemed to be surviving the harsh conditions—though its fronds were a bit battered and curled inward.  

“How does it grow so many places?” John enthused—impressed by its adaptability.

Overall, it seemed the backside of the dune had a rich assortment of plant life. “This area is cut off from new sand deposits,” John explained, so “there is more biodiversity back here.” 

Evergreen huckleberry and sword fern hidden in the beach grass

The Crest

However, as we trudged up the steep foredune, the dune closest to the ocean, all of that changed. As we reached the crest—the highest point of the foredune—we faced a near uniform sea of European beach grass. 

John explained:

“There is low diversity on the face of the foredune, where it is really only the grasses. The grasses build up a dune tall enough that it buries the other plants trying to grow and eventually creates a wall that prevents the sand from being blown further back.”

In short, European beach grass is too good at building dunes—nothing else can really keep up with the rate at which they collect sand. 

John’s dog standing at the crest of the dune

The Toe

Coming down off the face of the dune, some biodiversity may be regained. Certain plants become more common on the toe of the dune—the far front end of the dune facing the water. 

Though we didn’t see any on our hike, John sent me a list of these species common to the toe: yellow sand verbena (Abronia latifolia), pink sand verbena (Abronia umbellata), American sea rocket (Cakile edentula), sea rocket (Cakile maritima) and seaside sandwort (Honckenya peploides). 

View looking up at the dune toe

Storing Carbon

John and I hiked down the face of the dune to the beach to continue our walk. 

As we walked the beach, John told me about his part in researching the dunes. You see, John doesn’t just study the plants in the dune ecosystem, he studies the carbon. 

“Coastal ecosystems like salt marshes, estuaries, and mangroves are really good at storing carbon,” said John. 

He went on to explain how carbon is stored through “two mechanisms.”

First, the vegetation in these ecosystems stores carbon via photosynthesis—essentially removing carbon from the atmosphere and storing it in their tissues, and later the organic matter in the soil after they die. 

Second, is the storage of carbon in sediment that is washed in and settles in these tidal areas, building up a layer of organic matter. This organic matter sticks around, decaying very slowly—effectively storing carbon for the long term. 

The problem is that though estuaries, tidal marshes, and mangroves are excellent carbon stores, they only make up a tiny fraction of the world’s coast—“up to 6%” according to John. While dune ecosystems, whose carbon storage potential has largely been overlooked, make up one-third. 

Admittedly, dunes don’t seem at first glance likely candidates for the world’s greatest carbon sinks. The fact that they are mostly sand isn’t particularly encouraging. But that didn’t deter John from researching dune carbon—work he has been engaged in over the last four years. 

Counting Carbon

This of course raises the question: How does one go about measuring carbon? 

“We do a transect from the water back to the trees and shrubs,” John answered when I asked him that very question. A transect is simply a measured line from which data is gathered. 

Then using a quadrat—a square made of PVC pipe that’s used to measure things in a certain area—the abundance and density of plants are measured at points along the transect, and samples of plants are collected. This data will be used to determine the “above ground carbon.”

Then, using a 4-inch PVC pipe and a sledgehammer, John takes cores along the transect as well. These cores go down 1 meter and are used to collect samples of “below-ground carbon.”

Once in the lab, samples are dried,  weighed, and then burned at 550 degrees Celsius. Before and after weights of the samples are used to get a crude measure of organic matter—a decent proxy for carbon. Later, elemental analysis is done on some subsamples, as well, to determine the organic matter to carbon relationship. 

The goal is to get an estimate of “the actual carbon stocks” found in dune ecosystems. 

Findings

The sun reflected white puffy clouds as John and I hiked on the wetter, firmer sand on the beach, closer to the ocean’s edge. 

I asked John what he has discovered so far. Was there any carbon in the sand below our feet?

In general, not a lot. 

“Sand is mostly inorganic tiny rocks,” said John. “They don’t trap organic matter very well and there is a quicker rate of decomposition relative to materials like silt or clay.”

The highest value John has found in any of his sand samples is 10% organic matter. On average 4.4 kg of organic carbon per meter squared. These values are higher than desert sand and even higher than conventional agriculture, but on the low end compared to salt marshes and terrestrial grasslands, according to John. 

“The highest in some other systems could be 80%,” stated John as a comparison. John mentioned mangroves and coast range forests—these would be many magnitudes more. 

Of course, these values are per volume and per unit mass, and there is a lot of sand in the dune ecosystem. Therefore, despite the low percentage, the dunes are still providing a substantial carbon store.  I mean, 10% of a lot is still a lot.  

Hiking along the beach at South Beach State Park

Patterns

Having gathered data from nearly fifty transects up and down the coast, John has also observed other patterns. 

There are differences depending on latitude, type of dominant beach grass, distance from the shore, as well as vertically within core samples. 

“There is more (carbon) near the surface,” John remarked, “—the organic horizon of the soil.”

Carbon also varies as you move through a transect—increasing as you move toward the back dune where the vegetation is more biodiverse and complex.  The intertidal area is also typically a bit higher, around 1%, and the toe of the dune at something like 0.5%. 

“Plants are the main driver of organic matter,” John explained. Thus, the further you move back from the ocean, the more carbon.

Ecosystem Services 

I glanced up at the dunes to our right as we strode across the “mostly inorganic tiny rocks”—measuring the mass mentally, assessing the carbon. 

Could these dunes help solve our climate crisis? Should we be building more dunes?

I didn’t ask John these questions. These are questions that John said that he commonly gets asked about his research.  

The short answer is no. 

He continued, “We don’t have all our results, but we expect that today’s dunes store more carbon than native systems would have done and trap more sediment,” but “the reason there is too much carbon in the atmosphere isn’t because we dug up the dunes.”  

The dunes were not historically here. Though they provide some benefits, like storm and erosion protection, and even a little carbon storage, the pre-dune environment would have had its own set of benefits. 

“Before these grasses were introduced, lots of native plants and animals were able to live here, and many Indigenous peoples would have managed this environment for ecosystem services important to them.”

Also, we do know that the dune ecosystems, as they exist now, have at least some drawbacks to wildlife. 

John was adamant about balancing the services of the past and future. 

“They do a great job protecting coastal development, but not so great when it comes to the flora and fauna,” John said. “It is about the collective good.  Coastal protection is only valuable for those living right on the coast.” Does that mean it is best for everyone?

Carbon Stores

By now, John and I had reached the South Beach Jetty and turned inland, hiking up to the parking area to where we could loop back to our cars. 

 I asked John as we reentered the most carbon-rich back dune environment and eventually the forest: What ecosystems we should be looking out for, if not dunes?  

“The temperate rainforests in the northwest coast range and west cascades,” was his unhesitating reply.  Though he corrected himself a little—“old growth forests.” 

John explained how carbon is sequestered in the mass of the old-growth trees, both above and below ground.  He also made clear that high-density forests, like might be found on a tree plantation, are by no means comparable. 

“Fewer large trees have more carbon than a bunch of small young trees,” John said. 

He mentioned the work of Dr. Bev Law from the College of Forestry at Oregon State University as a source for these findings.

“Her work is showing the effects of the logging industry,” he continued. 

Mangroves are another ecosystem John mentioned for carbon storage. Again, much of the carbon found in mangroves is stored in the tissue of the trees. In the case of mangroves, mostly below ground. 

“Even in coastal ecosystems,” said John, “mangroves are an arm and leg above the others.”

Looping back 

After meandering a while in the tall dune grasses, once again, we found our way back to the forested paved path. As we walked, we talked forward about the future—both in research and in life. 

There are still many questions to be investigated when it comes to dune research. John mentioned being able to study the forested dune environment as being a good next step, though admitted he would not likely be the one to do the work. 

He also described a strong curiosity to understand more fully the structure of the foredune—what it looks like several meters down. John rattled off several questions for starters:

“What does the root system look like? Are those roots and rhizomes all from the same plants? How has the water table changed? Is the carbon density the same deeper than a meter?” 

Uncertain Future

John doesn’t know what he wants to do when he finishes his Ph.D.—though he expressed an interest in teaching, perhaps at a small 4-year school or community college. 

But as he put it, “I haven’t taken other options off the table.”

The future is a tough thing to peg down. 

The Pacific Northwest dunes and coastal environments also face an uncertain future. Climate change and human encroachment threaten these ecosystems and their functioning.  

John hopes his research can help inform coastal ecosystem management. By understanding what we have now—perhaps we can mitigate against these threats and create a future worth preserving. 

John Stepanek is a  biologist and PhD candidate in Sally Hacker’s Lab at Oregon State University. He earned his Bachelor of Science from California Polytechnic State University where he majored in Biology.

Hike with a Sports Product Designer

Looking down the Wildwood Trail near the Newberry Trailhead

One thing that I love about hiking is its simplicity. You don’t have to invest in a bunch of gear to become a hiker—although some people do. All you need are a good pair of shoes and a pack filled with necessities, and you are off to the races.

At the same time, the sport of hiking is ripe for product innovation. Hikers are ready for products that improve performance, safety, and overall function. I mean, honestly, a good pair of shoes can be difficult to come by.

Which begs the question, how do hiking products come to market? What is the design process for a hiking shoe or pack?

On a cool spring day, I met with Susan Sokolowski, director of the Sports Product Design Program at the University of Oregon, and Henry Gilbert, one of her students enrolled in the program, for a hike on the Wildwood trail to find out.

The Hike

  • Trailhead: Newberry Road Trailhead (45.605640, -122.823430)
  • Distance: 5.1 miles out and back with longer options
  • Elevation Gain: approximately 531 feet
  • Details: Limited parking at the trailhead which is a pullout on the side of the road. No restrooms are available. Roads to the trailhead are paved making access easy. This is the northern terminus of the 31.1-mile Wildwood trail.

It was raining hard right just a few minutes before I pulled up to the trailhead. The trees still glistened with fresh drops clinging to the tips of the branches. I found Susan and Henry just down the road a bit from where I parked, and we got started. A trail running event looked to be coming to an end as we arrived, and a table of volunteers welcomed us to the forest.

We took off at a moderate pace down the trail.  The green conifer forests promising some level of protection if the sky decided to open again.

What it takes

We started with introductions.

Henry introduced himself as a student, originally from Salt Lake City, in his first year in the Sports Product Design program at UO. His background is in electrical engineering.

“I heard about this program, and I was super excited about it,” said Henry, “I have a passion for hiking.”

Susan introduced herself as the professor and director of the sports product design program. Her background is in design, as well as human factors engineering and kinesiology. She earned her master’s degree at Cornell University under Susan Watkins, the mother of functional design, and from there entered the sports design space at the University of Minnesota, co-majoring in biomechanics and design.

“When I went to school, I was definitely an oddball student,” Susan laughed.

Susan (left) and Henry (right) after walking through some mud on the trail.

The Design Process

We continued along the well-worn path under the canopy of Douglas-fir and western redcedar. Sword fern dominated the understory along with a myriad of herbaceous forest plants, including vanilla leaf and yellow stream violet. 

As we hiked, I asked Susan for an overview of what she does as a sports product designer.

She began her explanation with a mission statement:

“Our mission is to push the field with game-changing solutions for athletes that push performance and society.” She continued, “we are looking at performance, but also in the sports industry, especially sports products, there is a large movement to look into equity in sport—and that is part of it as well.”

This is what sports product design—at least how she does it—aims for. But how does it get there?

“We use a design process that it similar to the scientific process,” entertained Susan.

As Susan explained, the process starts with a line of inquiry based on “how could we” or “how might we” statements—something akin to a hypothesis of sorts. From there ideation begins and the process of prototyping.

“Our program really values creating concepts and physical prototypes,” Susan expounded.

Once the prototypes are built, they are tested. This usually involves athletes or users trying the product and giving feedback.

Of course, just like in science, testing doesn’t always lead directly to the production and marketing of a product. Often the results of testing may require a step back or two. The design process is not linear. 

Product Testing

We soon crossed over a small wooden footbridge as we made our way further into the forest.

I asked Susan to elaborate more on the product testing side of things.

“There are infinite ways to test products,” Susan replied. “We could be testing for ease of use, regulation, impact protection, a feeling, accuracy… anything you can want an athlete to do, or have a better experience with, you can be testing for.”

On the practical side of things, the most common method used for testing is calling in a focus group. Asking people to experience the product and give feedback is the minimum expected for testing.

Then there are more complex methods using equipment, like thermistors or environmental chambers, for example.

Things get even more complicated if you are making a claim or in the business of making products that are more dangerous, like helmets. It is in these instances that, according to Susan, “testing becomes very important.”

“Companies have been shut down,” said Susan, “when testing wasn’t up to snuff.”

So, depending on the product, testing could take a long time, even years.

Views of the footbridge crossing on the trail

Hiking Shoes

At this point, we were beginning to encounter a good deal of mud on the trail. I could feel the traction of my hiking shoes failing as the slick clayey mud started to gum things up.

“What about hiking shoes?” I asked, “Let’s say you want to design hiking shoes.”

Susan was quick to admit that hiking shoes are not only a challenge for people to shop for but also a challenge to design. On top of that, there hasn’t been the level of effort put into hiking shoes as there has been for other products, like running shoes.

“Hiking is complicated,” said Susan, “because, like we are hiking on mud today which is different than hiking on something like snow or ice…”

In general, certain features should be considered to deal with the all-terrain use of hiking shoes, including traction performance, flexibility, water migration, waterproofness, and stability.

Methods for testing will often vary by company. Though there is some standard testing. A wear test—where a group of people wears and compares the product to a baseline is another possible method.  Wear tests can be as short as trying a product for an hour of exercise, for as long as a few weeks or even a month. Longer than that and designers can’t meet product timelines that very much rely on a season product launch cycle.

According to Susan, the sizing and fit of hiking shoes are also important to test.

Even though shoes are often built to a particular size model, the materials and how they respond to wear vary a lot.  Thicker material might make the size envelope a bit smaller.  Stretchy material may make it larger.

Duct Tape

We walked further down the trail.

Henry chimed in regarding his experience with product testing shoes. “It was interesting to see what they (the designers) were looking for,” he said.

One such “look for” were hot points and blisters—a common ailment among hikers, especially in certain conditions.

Susan told me about a time she did a hiking race on hot asphalt.  “My feet were burning!” She exclaimed. “I had to wrap them in duct tape.”

I told the group about a backpacking trip on sand that had a similar effect.

The good news?

“I learned duct tape is amazing,” said Susan.

I mean duct tape does fix everything. And in the design world what better tool can you turn to in a time of crisis?

“We aren’t afraid of duct tape,” Susan agreed.

Testing Woes

The weather continued to hold up as we walked along. Thought the mud only seemed to pick up. I told Susan and Henry we could go as far as they wanted.

“We won’t go 30 miles,” was Susan’s comical reply. These two were just plain fun to hike with.

Henry is not the only design student to be recruited for product testing.

“Companies know that they (her students) understand product,” confided Susan. “It is hard to get good product feedback,” she went on. 

If one thing is “wrong” with the product, often time feedback will come back negative, and the positive qualities of a product will be lost. Susan told me how countless times she has had testers come back with comments about the color of a product.

“I didn’t like the purple ones,” Susan mimicked a difficult tester. “It can be really polarizing.”

If even there is a more substantial complaint, like an uncomfortable high top on a boot, often all other feedback is lost on this one major complaint.

Research

Of course, before product testing, comes a different type of feedback—research.

“If the research isn’t there, then the design is completely invalid,” Henry confessed.

Research usually comes in the form of interviews with potential users and looking at existing products on the market. Science also supports and informs product design.

Henry shared a project he worked on designing a base layer for visually impaired skiers using haptic technology to communicate with their guides. He interviewed several visually impaired skiers to determine where best to place the haptics.

Research is imperfect though.

“Sometimes you will design something fully based on science,” said Susan, “but then someone will put it on, and it can nullify the invention.”

Looking uphill on the forested Wildwood Trail

Synergy

Soon we reached a large, upended tree—its roots sticking out at us onto the trail and a sticky, thick mud bath below. As we carefully picked our way around it, or in some cases slid our way, I asked Susan to tell me more about how science informs product design.

She laughed because in a lot of ways it doesn’t.

“There is a lot of research that happens in the lab that never gets applied,” said Susan. “In the pure sciences, you get a finding and move on.”

Pure sciences are often funded that way. Scientists are supported for the initial body of work—to answer a specific question. Once that knowledge is obtained the funding dries up.

However, at least at the University of Oregon, Susan is seeing a change—a shift to more collaboration between pure and applied science that seems to really be paying off.

Susan is part of the Wu Tsai Alliance—a group comprised of scientists from a variety of backgrounds with the common goal of understanding human performance.

“The group formed last year, but we are already seeing the synergies,” said Susan. “For example, a biomedical engineer designed and sensor, and one of my students is taking the sensor and putting it into footwear for their thesis project,” she elaborated.

Fighting for Women

Like the obstacles to collaboration, the Wildwood trail continued to throw log hops in our way. As we clambered over another one, I asked Susan to share a bit about the projects she is involved in.

“I have my fingers in a lot of different things,” was her unsurprising response. She didn’t seem the type to take life sitting down.

“I am finishing some research on size and fit issues for women firefighters,” Susan shared one of her projects.

“Gear for women isn’t really designed for women,” she explained. As a result, women firefighters are getting hurt. A fact that has been known for over a decade but hasn’t been acted on until now.

Susan hopes to change all that by identifying important knowledge gaps.

As a next step, she is also working with another scientist that does machine learning to analyze 3-dimensional body scans of athletes.  The goal is to understand geometries beyond the basic chest-waist-hip measurements and interpret findings into better product performance.

Runners High

Susan is also using machine learning and body scans to better understand women’s running. She plans to survey thousands of runners and pair that data with scans to look for unknown patterns that relate to running performance. She hopes to tease out what is talked about in the common press when it comes to performance—to identify what works and what is just hype.

Innovate

At this point, Susan, Henry, and I reached a trail sign near a fire lane. Having gone a few miles, we decided to turn around. Thankfully the rain continued to hold off as we retraced our steps back.

Then I asked Henry, what he wanted to do with his career. His answer boiled down to one word—innovate.

“In our field, there is true athletic product innovation,” said Susan.

However, the focus of that innovation has shifted over the years, leaving many sports neglected. According to Susan, outdoor sports, like skiing and climbing, are ripe for innovation.

Hiking is another one.

“Running shoes are designed for environmental and biomechanical needs,” Susan explained. “Hiking shoes haven’t really gotten there yet….that is why people go to trail running shoes.”

Environmental Wear

Another area ripe for innovation is waterproofing.

Though there are some products that work better than others, waterproofing than be challenging. For one, it doesn’t last. And secondly, the chemistry is bad for the environment.

“It is part of the Teflon family of chemicals,” said Susan.

So, companies turn to more environmentally friendly alternatives, but at a cost—a loss in product quality.

Walking through a beautiful green Douglas-fir Forest, it is hard not to want to protect it. So, I asked Susan, how we are doing in the sports industry with making environmentally safe products?

“We are not doing well,” was her blunt response. As the sports product industry shifted from cotton and wool materials to synthetics in the 1960s and 1970s, sustainability went out the window.

“It is concerning when you learn more about it,” said Henry.

However, there is some hope for the future. According to Susan, natural fiber companies are working on innovating to create more biobased products.

In addition, there has been an uptick in transparency regarding the sustainability of products. For example, Marmot now ranks products for their sustainability versus performance.

“Companies are going to be held accountable, “Susan commented. She mentioned a panel she was on in Europe where there was a discussion on taxing people for purchasing unsustainable products. “I think we may see things like that in the future,” she continued.

Recycle, Reduce, Reuse

A few other ways companies are combating the issues of sustainability and durability are through the reuse and recycling of products. Companies like Patagonia will buy back products and repair them for resale. Other companies will recycle products to make something new.

Repair is another major movement. Susan mentioned Fjallraven in Portland’s Pearl District providing repair and waxing stations for waterproofing.

Keep it Simple

We continued working our way back to our cars, climbing the logs and sliding over the same mud slicks we encountered on our way in.  As we were nearing the trailhead, I asked Susan and Henry for some consumer tips for buying products.

“For me, it is not to overdo it,” said Susan. She recommended choosing clothing that is comfortable, fits well, and allows for mobility. It isn’t necessary to have high-tech gear on a day hike. Even jeans may be acceptable in most conditions.

“There is a lot of discussion around equity in sport,” Susan said, “especially hiking.” According to Susan, people see it as a “white sport” and only for the “affluent,” but hiking is for everyone.

By keeping things simple, she hopes more people will see themselves on the trail. 

Wear and Tear

Another tip Susan emphasized was wear.

“If you haven’t fully worn in something, you can have a really bad experience,” said Susan.

“Your body changes when you are hiking,” she continued. “Feet and hands can swell, for example.”

Taking the time to try out gear in a low stakes environment and wear it in is key to an enjoyable outdoor experience.

Luckily, some companies are creating return policies that allow consumers to really try out products before they fully commit to purchasing.

Functional Innovation

Innovative products that improve functionality is something else to look out for and consider when purchasing items.

Susan mentioned innovation in hydration as another example. Camelback and other bladder systems allow for a hands-free experience, while filters allow for longer and safer outdoor experiences. Both innovations have revolutionized outdoor sports.

Even something as simple as having the right size or style of pockets can make or break a product.

Keep Improving

As we neared the trailhead, I asked Susan one more question—Why does sports design matter?

According to Susan, sports product design is about maximizing human potential. It is also about the benefits of engaging in sport –  like health and happiness, available to everyone.

“There are an infinite number of problems to solve,” said Susan, referring to the sports product industry.

Fortunately, the process of product design is iterative. And with new tools for design, products are improving.

Body scanning and machine learning are changing how products can be made. It may be that mass production changes in the future and more personalized sizing will become available to everyone.

“The tech is already there,” Susan remarked. “I know scientists that can look at your Facebook picture and tell what your body scan looks like.”

Hike Happy

In the meantime, consumers and hikers have a lot of options to choose from when it comes to sports product design. There are still some problems to solve. But, by keeping it simple and choosing products that function and wear well, you can still enjoy the benefits.

So, take a hike through the woods. Climb a mountain if you will. Paddle or float. Whatever sport you engage in, keep it simple and wear what works for you.

Perhaps Henry’s advice is most apt and to the point: “You got to wear what makes you happy.”

Susan Sokolowski, Ph.D., is the director of the Sports Product Design Program and the University of Oregon. She has over 25 years of experience in the sports product industry.

Hike at McCully Mountain with a Wildlife Biologist

View of the McCully Mountain meadows

Open prairie grasslands, hummocky wet meadows, meandering rivers, and magnificent branching oak woodlands—before European settlement, Oregon’s Willamette Valley was a very different place. A place blackened by fire and awash in waves of wildflowers. A sea of purple camas covered the hillsides, along with irises, cat’s ear lily, golden paintbrush, and more. Grand Oregon white oaks, with their spreading branches, grew singly or in woodland patches, completing the look.

Now, very little of these habitats remain in the Willamette Valley—lost to human development. It is a place dug up by plows and awash in pavement. A sea of houses covers the hillsides with agricultural fields everywhere in-between.

In recent years, as scarcity has increased, oak habitats in Oregon have been given more attention. Even sites on the edge of the valley are being considered for restoration by conservation groups and land management agencies.

McCully Mountain, just east of Salem, is one such site. A parcel of BLM land with a bit of oak on a wet meadow surrounded by private lands, and in need of a little elbow grease. 

So, with the help of volunteers and other staff, Corbin Murphy, BLM wildlife biologist, has been working for the last few years to restore the parcel. Or as he put it, “create some habitat on the landscape.”

I met with Corbin on a wet spring day to take a look at the progress. 

The Hike

  • Trailhead: No official trailhead.
  • Distance: varies
  • Details: Park at the pullout on East McCully Mountain Road. No trailhead or signage. There are no amenities at this site.

Classic BLM

Corbin and I carpooled out to the McCully site along some backcountry roads, before reaching a small pullout. A faint trail led us through a Douglas-fir Forest a short distance.

“This is kind of classic BLM,” said Corbin. In other words, a parcel of public land, abutted by private lands.

You see, in the late 1800s, as part of a settlement plan for the west, the federal government granted every other square mile swatch of land to the Oregon and California Railroad Company to fund the building of public transportation through the state, the other half was to be sold and distributed to settlers.

Unfortunately, fraudulent sales led to the reinvestment of the O&C lands where they were put under the jurisdiction of the U.S. Department of the Interior, General land Office (GLO). Today these lands are now managed by the Bureau of Land Management (BLM).

The problem is this “checkerboard pattern” of land ownership is a “nightmare for management.” Though there has been some consolidation of ownership, public and private lands still share extensive boundaries.

“Access and road problems are reoccurring,” Corbin explained. And McCully is no exception. “Folks can walk down the spur road to get to the BLM, it is public access,” despite warnings from signs posted on the gate.

ACEC

Eventually, the conifer forest peters out along a grassy ridge with views onto the surrounding hillside.

“This is the property line right here,” said Corbin.

Oregon white oak grow in huddled bunches along the ridge—mostly smaller trees trying to get a foothold. A soggy meadow lays quietly below.

“For the BLM this is one of our Areas of Critical Environmental Concern—an ACEC,” said Corbin. As such, McCully receives special management attention to protect its natural resources.

ACECs are established for a variety of reasons. Some are established for geology; others for their cultural or scenic value; and others for habitat, for example.

McCully was designated an ACEC for its scenic value, natural systems, and wildlife value.

“Special habs,” as Corbin put it—McCully is “not just some conifer forest… it is 80 acres of oak meadow.”

Views from the grassy ridge at McCully Mountain

Inverts

As we continued down the ridge, Corbin and I were cognizant of the wildlife all around us.

A Northern pigmy owl called out in the distance. Deer and elk scat lay in darkened clumps on the bed of green grasses and herbaceous plants at our feet. I nearly trip over a mountain beaver burrow entry hidden on the ground.

However, it was the smaller, less conspicuous critters that Corbin is really jazzed about.

“There has been a lot of work on megafauna, and especially rare species,” Corbin explained, “but there are a lot of critters that are new to science and not studied. A lot of these are inverts.”

Invertebrates—animals without a backbone, like insects, spiders, and worms—play many important ecological roles. Many are pollinators; others are decomposers, for example. And all are key parts of food webs—supporting vertebrate species, like birds.

Thus, studying invertebrates can tell us a lot about the functioning of an ecosystem.

Moths

One group of invertebrates that hasn’t recieved a lot of attention are the moths. Which is why Corbin was thrilled to have McCully Peak included in a moth study organized by researchers at Oregon State’s Arthropod Collection.

The study was intensive with survey data collected every two weeks from light traps set up at four different points acrooss the meadow.

“Guess how many species we found?” asked Corbin, a twinkle in his eye.

“I don’t know, twenty,” I guessed reluctantly.

“Two hundred!” Corbin exclaimed. “And a bunch were for the first time documented in this county in Oregon,” he went on gleefully.

Of course, these results were collected before restoration work got underway.

“We will come back and do some post-treatment monitoring,” Corbin assured me.

Competition

Corbin and I continued to circle the forested meadow’s edge. Douglas-fir logs lay abandoned near their stumps along the ridge. Other conifers have been girdled—a strip of bark removed in a ring around their trunks.

“The down wood and snags are important for wildlife,” Corbin explains. Offering habitat for many species, including many of Corbin’s beloved invertebrates.

Perhaps even more importantly, Oregon white oaks are slow-growing species and can easily be shaded out by fast-growing conifers. So, a big part of oak restoration involves getting rid of the competition—in this case, Douglas-fir. But rather than simply harvesting the Douglas-fir trees and hauling them off, the trees are left in place to decay.

Corbin was also quick to note that, though the Douglas-fir have a foothold now, the shallow soils in the meadows make it difficult for the trees to succeed long term.

“Many are dying,” Corbin points out, but while they live, they make it more difficult for the oak.

Down logs and girdled Douglas-fir trees

Invasive Species

In addition to competing with conifers, oak habitats face encroachment from alien invaders—a.k.a. invasive species.

“This was all ringed with scotch broom,” Corbin shared as we cut along the meadow’s edge, dodging poison oak as we went. Shiny geranium, another invasive species, grew in large uniform patches at our feet.

“We pulled and cut all the scotch broom about 2 years ago,” said Corbin.

As Corbin and I headed down the hillside, we spotted a few new scotch broom sprouts. When it comes to invasive species, the work never really ends.

“It is going to be a constant battle,” resigned Corbin.

Dead Scotch broom along the trail

Volunteers

A lot of the restoration work, including removing invasive species, was done by volunteers using clippers and machetes.  At McCully, several volunteer groups came out to help with the restoration work, including Northwest Youth Corps and Linn County Juvenile corrections, as well as a group from Backcountry Hunters and Anglers.

Volunteers also helped with basketing oaks—encircling young oak with netting to protect against browse.

“Deer are funny,” Corbin chuckled, “they love oak.”  At one point, Corbin pointed out an oak that had been heavily browsed—nary a leaf could be seen.

Thanks to volunteers, more of the oaks can escape these pressures and have a chance to make it to maturity.

“I do love the opportunity to get the volunteers out,”  said Corbin. “Something like this is really fun too,” he went on.

Corbin reminisced about the time the Backcountry Hunters and Anglers visited. Elk ran through the meadow and they saw a ton of wild turkey.

“We are coming back!” they told Corbin after a long day of volunteering.

“Good! This is your public lands, enjoy it!” was Corbin’s reply.

One of the basketed Oregon white oaks

Suspected Species

The sky is gray, threatening rain. Corbin and I continued past more young oak and patches of scotch broom toward the meadow below. 

Tracking down the hill, we followed a wide muddy path littered with deer and elk hoof impressions.

At the bottom of the hill is a wet meadow where yellow monkey flower grows in a wet seep. Fist-sized rocks lay scattered on the meadow that has been heavily grazed. The vegetation is clipped close to the ground in most areas. The scenery is beautiful, and wildlife clearly abundant.

Transfixed by the open, rocky expanse, I asked Corbin what sort of wildlife might use the space?

Well apart from the usual deer, elk, and other generalist species, Corbin mentioned several “suspected” species that he is hoping to find in the space. Streaked Horned Lark and Fender’s Blue butterflies, for instance—are two species associated with oak prairie in the Willamette Valley.

“We say ‘suspected,’” said Corbin, “If it is within the range and habitat requirements are all there.”

Boulder-strewn meadow

Desert Life

Another suspected species Corbin is excited about finding is the pallid bat.

“The pallid bat is a desert species that used to exist in the Willamette Valley,” explained Corbin. Other desert species, like ponderosa pine, jackrabbits, Northern Pacific rattlesnake, and burrowing owls were also once present in the Valley. But, like the pallid ba, these have all but been eliminated.

According to Corbin, the pallid bat is unique from other bats in that they don’t typically use echolocation but forage for ground-dwelling insects, like scorpions by sound. This can make them trickier to identify in the wild using passive acoustic recording units since they are not making ultrasonic calls to locate food.

“This is part of its historic range,” Corbin noted, so they could be here, or move here, even if they haven’t been identified yet.

Woodpeckers

The rhythmic thumping of a Northern Flicker sounded against the high-pitched songs of other bird species as we continued toward the forested edge of the meadow.

“What about woodpeckers?” I asked.

“It should be a feeding frenzy,” said Corbin, looking out on all the girdled conifers. “There are a lot of downy and hair woodpeckers, flickers, and pileated woodpeckers.”

Woodpeckers forage in dead and decaying trees, making the wooded edges of the meadow with newly developing snags, a great place to feast.

Lewis’s Woodpecker is another suspected species for the area, though none have been spotted yet. They were once widespread however due to habitat loss of mostly snags in oak, pine, and cottonwood woodlands their numbers are low. However, for all these species, Corbin is hopeful.

“If we create the habitat, they will come,” he tells me.

Making Habitat

Dark clouds continued to gather, as Corbin and I walked adjacent to the forest, looking up at more girdled conifers. Corbin admitted that girdling is not the ideal way to create snags but it is quicker and cheaper than topping them.

“It is expensive to top them,” he said, but “it creates an opportunity for spores to land on top and heart rot to enter.”

Ultimately, cavities form, making the tree not only an excellent foraging site for woodpeckers but useful for nesting as well.

Legacy Tree

Soon a large snag came into view. This was no restoration project tree—it’s open-top reached toward the sky.

“That is what we call a legacy tree,” said Corbin. “It was probably part of a previous cohort,” he speculated. “A stand-replacing fire came through and that was the only one that lived.”

Snags are excellent habitat for many species. Legacy trees are even more exceptional. Their large girth can support species that depend on a larger diameter tree.

“Those are great for bats,” Corbin exclaimed. “We have another bat that is out here,” he went on, “the fringed myotis.” Named for the fringes of hairs that can be found between their back legs.

“It loves snags,” said Corbin. “It roosts in the sloughing bark,” he continued.

However, in this case, size does matter. They need a larger diameter snag—”61 inches on average,” according to Corbin for roosting. “It is one of the limiting factors for fringed myotis.”

Large Down Wood

The life or death, as it were, of a legacy tree does not end there. When snags eventually fall to the ground, they continue to support species dependent on larger trees for survival. For example, Oregon slender salamander, an endemic to the Cascades, has only been found in large down wood.

Corbin expressed concern about these species. “Maybe around the turn of the century there were really big trees,” but… “fast forward and much of our forests are on a 30-to-40-year rotation.”

Large trees begat large snags begat large down wood. If we don’t have enough large trees, where does that leave us?

So, perhaps it is not surprising that Corbin called legacy trees “gems on the landscape.” They are both valuable and rare.

Legacy tree

Intersection

We continued to follow the forest down to the property line, where BLM land abuts private. As we reached the fence, we could see another clear cut could be seen through the trees.

“Well, I guess there is more meadow now,” Corbin smirked.

A turkey sounded in the distance. Surprisingly, Corbin called back. The turkey gave no response. It remained silent, even after I gave a half-hearted gobble-gobble.

We passed a girdled tree that had fallen over. A few purple calypso orchids grew near its base. Then a bit later, Corbin spotted invasive mullein that gave him pause.

Eventually, we began to edge our way back through the meadow at the back end of the property. It was at this point, that it began to shower.

We had reached a point of intersection—between forest and meadow, public and private, and wet and dry—a confluence in more ways than one.

“Anytime you have the confluence of conifer forest, oak woodland, and prairie,” Corbin stated, “that is where you are getting cover, forage, and nesting opportunity.”

That is where you find wildlife.

Secret Garden

We soldiered on over the soft hummocks of grass and herbaceous plants. Rocky outcroppings and undulating hills gave the walk dimension. Prairie stars and rosy plectritis also made an appearance in these lower meadows.

 “There is a lot of BLM ground like that that people just never really get to,” Corbin remarked as we passed by a patch of popcorn flower. “A fun part of my job is getting to explore these areas.”

This certainly rang true for McCully. There was no one around but us… and the deer.

Looking up from the lower meadows

Boundaries

As the rain picked up, Corbin and I decided to turn and loop back up to our vehicles. Corbin led the way—following the path of least resistance and least poison oak.

I was really starting to feel an affinity for the place—wildflowers have a way of doing that to me. Inspired by the unique landscape, I wondered just how much land BLM has designated as areas of critical environmental concern (ACEC). So, I asked Corbin.

“It is hard to tell,” he responded, “different field offices have different amounts of ACEC.”

For the Cascades field office, running from the Columbia River Gorge to Sweet Home, where Corbin works, he estimated a figure—“there are roughly fifteen thousand acres out of one-hundred-seventy thousand acres, about 8 percent in the Cascades Field office and about 2 percent across Western Oregon BLM.”

In short—there is not a lot.

Each ACEC is specifically delineated to encompass just the small area of land that contains a unique feature, like a rock garden or bog. ACECs are by definition scarce. Anything that isn’t unique makes up BLM timber reserves, some of which are open to timber sales and sustainably harvested.  

Heading Home

We continued up the hill, passing by deer beds… “1, 2, 3, 4, 5…” Corbin counted as we walked by. We followed a creek bed that looked more like a slip and slide where you could see just how shallow the soil was above the exposed bedrock.

“Not even a couple of inches of soil on that,” Corbin exclaimed.

Eventually, we re-entered the familiar forest that we had walked through at the beginning of our hike—back into the ordinary.

Looking back through the trees at the oak meadow, it appeared almost magic against the grey sky—a secret tucked away in the west hills of the Cascades.

But McCully Peak isn’t a secret. It is one of many unique places scattered throughout our public lands—welcoming a visit.

Corbin Murphy is a Wildlife Biologist for the Salem District of Bureau of Land Management. He has been with the BLM for 13 years and currently works in the Cascades Field Office. He has also worked for the U.S. Forest Service.